MATRICES \& TRANSFORMATIONS WORISSHEET 2 - IMAGES OF EQUATIONS

QUESTION 1

Find the equation of the image of the line $x+y=1$ under the transformation defined by the matrix $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Solution

QUESTION 2

The line $y=2 x-1$ undergoes a translation with matrix $\left[\begin{array}{l}-3 \\ -2\end{array}\right]$. Find the equation of the image.

Solution

QUESTION 3

The parabola $y=x^{2}+1$ is transformed by the matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$. Find the equation of the image. Solution

QUESTION 4

Consider the linear transformation represented by the matrix $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$. Find the image of the curve $x^{2}-y^{2}=1$ under this transformation.

Solution

QUESTION 5

The linear transformation \mathbf{T} is defined by the equation $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
Find the equation of the image of the curve $x^{2}+y^{2}=4$ under T.

Solution

QUESTION 6

The linear transformation T is defined by the equation $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}1 \\ 4\end{array}\right]$. Find the equation of the image of the curve $y=\sin x$ under T.

Solution

QUESTION 7

Under the linear transformation of the plane $T: R^{2} \rightarrow R^{2}$ is defined by
$T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{cc}\frac{1}{3} & 0 \\ 0 & -\frac{1}{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{l}0 \\ 2\end{array}\right]$
Find the equation of the image of $y=\log _{e} x$ as the result of this linear transformation.

Solution

QUESTION 8

The linear transformation \mathbf{T} is defined by the equation $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{c}0 \\ -2\end{array}\right]$.
Find the equation of the image of the curve $y=e^{x}$ under T .

Solution

QUESTION 9

The function $y=\cos x$ is transformed to produce the graph of $y=-3 \cos (2 x+1)$.
Write a matrix equation, $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$, to describe the linear transformation that occurred. Hence find the equation of the image of the curve $y=e^{x}$ under T .

Solution

QUESTION 10

The function $y=e^{x}$ is transformed to produce the graph of $y=\frac{1}{2} e^{1-4 x}+5$.
Write a matrix equation, $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$, to describe the linear transformation that occurred. Hence find the equation of the image of the curve $y=(x-1)^{2}$ under T .

Solution

SOLUTIONS

QUESTION 1

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x+1 \\
y+1
\end{array}\right] \quad \begin{array}{l}
x^{\prime}=x+1 \\
\\
x+y=1 \\
\therefore \\
\therefore \\
\left(x^{\prime}-1\right)+\left(y^{\prime}-1\right)=1 \\
\\
x^{\prime}+y^{\prime}-2=x^{\prime}-1 \quad \therefore y^{\prime}=y^{\prime}-1 \\
\\
x x^{\prime}+y^{\prime}=3 \\
\therefore
\end{array}} \\
& x+y=3
\end{aligned}
$$

QUESTION 2

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
-3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
x-3 \\
y-2
\end{array}\right]} \\
& \therefore x^{\prime}=x-3 \\
& x=x^{\prime}+3 \\
& \therefore y^{\prime}=2 x-1 \\
& \therefore y^{\prime}=y^{-2} \\
& \left(y^{\prime}+2\right)=2\left(x^{\prime}+3\right)-1 \\
& y^{\prime}+2=2 y^{\prime}+2 \\
& y^{\prime}=2 x+1 \\
& y=2 x+3
\end{aligned}
$$

QUESTION 3

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x \\
y
\end{array}\right]} \\
& \therefore x^{\prime}=2 x \quad y^{\prime}=y \\
& \therefore x=\frac{x^{\prime}}{2} \quad \therefore y=y^{\prime} \\
& y y^{\prime}=x^{2}+1 \\
& \therefore y^{\prime}=\left(\frac{x^{\prime}}{2}\right)^{2}+1 \\
& y^{\prime}=\left(\frac{x^{\prime 2}}{4}\right)+1 \\
& \therefore y=\frac{x^{2}}{4}+1
\end{aligned}
$$

QUESTION 4

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x \\
3 y
\end{array}\right]} \\
\therefore x^{\prime}=2 x \\
x=\frac{x^{\prime}}{2} \quad \\
y^{\prime}=3 y \\
y=\frac{y^{\prime}}{3} \\
\therefore x^{2}-y^{2}=1 \\
\left(\frac{x}{2}\right)^{2}-\left(\frac{y}{3}\right)^{2}=1 \\
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1
\end{gathered}
$$

QUESTION 5

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
2 y
\end{array}\right]+\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
x+3 \\
2 y+2
\end{array}\right]} \\
& \therefore x^{\prime}=x+3 \quad y^{\prime}=2 y+2 \\
& \therefore x=x^{\prime}-3 \quad \therefore y=\frac{y^{\prime}-2}{2} \\
& x^{2}+y^{2}=4 \\
& \left(x^{\prime}-3\right)^{2}+\left(\frac{y^{\prime}-2}{2}\right)^{2}=4 \\
& (x-3)^{2}+\frac{(y-2)^{2}}{4}=4
\end{aligned}
$$

QUESTION 6

$$
\begin{aligned}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] } & =\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
2 x \\
3 y
\end{array}\right]+\left[\begin{array}{l}
1 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
2 x+1 \\
3 y+4
\end{array}\right] \\
\therefore x^{\prime} & =2 x+1 \quad y^{\prime}=3 y+4 \\
x & =\frac{x^{\prime}-1}{2} \quad y=\frac{y^{\prime}-4}{3} \\
y & =\sin x \\
\frac{y-4}{3} & =\sin \left(\frac{x-1}{2}\right) \\
\therefore y & =3 \sin \left(\frac{x-1}{2}\right)+4
\end{aligned}
$$

QUESTION 7

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} x \\
-\frac{1}{2} y
\end{array}\right]+\left[\begin{array}{l}
0 \\
2
\end{array}\right]} \\
& \therefore \quad x^{\prime}=\frac{x}{3} \\
& \therefore y^{\prime}=-\frac{1}{2} y+2 \\
& \therefore \quad x=3 x^{\prime} \\
& \therefore \quad y^{\prime}-2=-\frac{1}{2} y \\
& \therefore \quad 2 y^{\prime}-4=-y \\
& \therefore \quad y=4-2 y \\
& \text { Substitute into } y=\log _{e} x \text {. } \\
& 4-2 y^{\prime}=\log _{e}\left(3 x^{\prime}\right) \\
& -2 y^{\prime}=\log _{e}\left(3 x^{\prime}\right)-4 \\
& 2 y^{\prime}=4-\log _{e}\left(3 x^{\prime}\right) \\
& y^{\prime}=2-\frac{1}{2} \log _{e}\left(3 x^{\prime}\right) \\
& \therefore y=2-\frac{\log _{e}(3 x)}{2}
\end{aligned}
$$

QUESTION 8

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
0 \\
-2
\end{array}\right]} \\
& =\left[\begin{array}{c}
2 x \\
-3 y
\end{array}\right]+\left[\begin{array}{c}
0 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
2 x \\
-3 y^{-2}
\end{array}\right] \\
& \therefore x^{\prime}=2 x \quad \therefore y^{\prime}=-3 y-2 \\
& \therefore x=\frac{x^{\prime}}{2} \quad-3 y=y^{\prime}+2 \\
& y=\frac{-y^{\prime}-2}{3} \\
& \text { Substitute into } y=e^{x} \text { : } \\
& -\frac{y^{\prime}-2}{3}=e^{x^{\prime} / 2} \\
& -y^{\prime}-2=3 e^{x^{\prime} / 2} \\
& -y^{\prime}=3 e^{x / 2}+2 \\
& y=-3 e^{x / 2}-2
\end{aligned}
$$

QUESTION 9

Dilation of fader 3 from x axis: $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ Dilamon of factor $\frac{1}{2}$ from y axis: $\left[\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 1\end{array}\right]$ Reflection in x axis: $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ Translation of $\frac{1}{2}$ units to the left: $\left[\begin{array}{c}-\frac{1}{2} \\ 0\end{array}\right]$
$T=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & -3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]+\left[\begin{array}{c}-1 / 2 \\ 0\end{array}\right]$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{c}1 / 2 x \\ -3 y\end{array}\right]+\left[\begin{array}{c}-1 / 2 \\ 0\end{array}\right]$
$\therefore x^{\prime}=\frac{x}{2}-\frac{1}{2} \quad \therefore y^{\prime}=-3 y$
$2 x^{\prime}=x-1 \quad \therefore y=\frac{-y^{\prime}}{3}$
$\therefore x=2 x^{\prime}+1$
substitute into $y=e^{x}$:

$$
\begin{aligned}
-\frac{y^{\prime}}{3} & =e^{2 x^{\prime}+1} \\
-y^{\prime} & =3 e^{2 x^{\prime}+1} \\
y & =-3 e^{2 x+1}
\end{aligned}
$$

QUESTION 10

Dilation of $\frac{1}{2}$ from x axis: $\left[\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 / 2\end{array}\right]$ Dilation of factor $\frac{1}{4}$ from y axis: $\left[\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{4} & 0 \\ 0 & 1\end{array}\right]$ Reflection in Maxis: $\left[\begin{array}{rl}-1 & 0 \\ 0 & 1\end{array}\right]$ Translation of $\frac{1}{4}$ units to right: $\left[\begin{array}{c}1 / 4 \\ 0\end{array}\right]$

Translation of 5 units up: $\left[\begin{array}{l}0 \\ 5\end{array}\right]$

$$
T=\left[\begin{array}{cc}
-\frac{1}{4} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{4} \\
5
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{c}
-\frac{x}{4} \\
\frac{1}{2} y
\end{array}\right]+\left[\begin{array}{l}
\frac{1}{4} \\
5
\end{array}\right]
$$

$$
x^{\prime}=-\frac{x}{4}+\frac{1}{4} \quad y^{\prime}=\frac{1}{2} y+5
$$

$$
4 x^{\prime}=-x+1
$$

$$
y^{\prime}=\frac{y+10}{2}
$$

$$
4 x^{\prime}-1=-x
$$

$$
2 y^{\prime}=y+10
$$

$$
\therefore x=1-4 x^{\prime} \quad y=2 y^{\prime}-10
$$

$$
\text { substitute into } y=(x-1)^{2}
$$

$$
2 y^{\prime}-10=\left(1-4 x^{\prime}-1\right)^{2}
$$

$$
2 y^{\prime}-10=\left(-4 x^{\prime}\right)^{2}
$$

$$
\begin{aligned}
2 y^{\prime} & =16\left(x^{\prime}\right)^{2}+10 \\
\therefore y^{\prime} & =8\left(x^{\prime}\right)^{2}+5
\end{aligned}
$$

$$
\therefore \quad y=8 x^{2}+5
$$

